全球高超聲速技術(shù)發(fā)展態(tài)勢分析
中國網(wǎng)/中國發(fā)展門戶網(wǎng)訊 高超聲速(hypersonic)是指超過聲速5倍的飛行速度,通常表示為5馬赫及以上的速度。早在20世紀初期,美國、德國、蘇聯(lián)(俄羅斯)等國家就開始對高超聲速技術(shù)領(lǐng)域開展相關(guān)研究。錢學(xué)森(Tsien)于1946年首次提出高超聲速概念。
早期發(fā)展歷程
奧地利工程師S?nger提出了一種可重復(fù)使用、以火箭為動力的太空飛機“銀鳥”概念(飛行速度10馬赫),并在1933年將該技術(shù)路線完善為基于液體燃料火箭發(fā)動機、可水平起降、飛行速度可達13馬赫的滑翔機;1944年,S?nger又提出了一個由火箭發(fā)動機提供動力的轟炸機項目,相關(guān)概念和構(gòu)思為后續(xù)高超聲速飛行器的發(fā)展提供了指導(dǎo)。
20世紀40年代初期,德國曾計劃建造一個用于模擬7—10馬赫的高超聲速風(fēng)洞,但后因故中止。1949年,美國通過V-2火箭首次實現(xiàn)了高超聲速飛行;1957年,美國阿諾德工程開發(fā)中心建造了一個高超聲速風(fēng)洞,并于1960年成功測試了由美國國家航空航天局(NASA)研制的火箭動力試驗飛行器X-15的7馬赫數(shù)飛行,這也是第一架實現(xiàn)高超聲速飛行的飛機。20世紀90年代中期,美國空軍科學(xué)顧問委員會確定了高超聲速的4個關(guān)鍵概念——導(dǎo)彈、機動再入飛行器、快速反應(yīng)/全球飛行器系統(tǒng)和太空發(fā)射/支持系統(tǒng);涉及的核心研究方向有空氣熱力學(xué)、推進系統(tǒng)和燃料(碳氫化合物和液態(tài)氫)、結(jié)構(gòu)和材料等。
主要國家研發(fā)動態(tài)
高超聲速技術(shù)具有兩用特性,可用于太空發(fā)射、航天器回收及客貨運輸?shù)确擒娛骂I(lǐng)域,以及作為高超聲速武器被應(yīng)用到軍事領(lǐng)域。
在軍事領(lǐng)域,高超聲速技術(shù)將增強端到端的精準打擊能力,以高超聲速發(fā)射的高機動性武器幾乎可以躲避當前使用的任何防御系統(tǒng),使快速反應(yīng)和全球攻擊成為可能。高超聲速武器具備超高速、高毀傷、高突防能力等特點,已成為大國空天軍事競爭的戰(zhàn)略制高點。近年來,世界各國不斷深入探索、積極部署高超聲速技術(shù),并已取得相應(yīng)成果。例如,美國海陸空軍都在積極研發(fā)高超聲速導(dǎo)彈,通過制定高超聲速導(dǎo)彈加速計劃,大幅增加支持和資金,以幫助開發(fā)、測試高超聲速武器,并創(chuàng)建部署該武器的部隊;俄羅斯已經(jīng)擁有“先鋒”“鋯石”“匕首”3款海陸空高超聲速武器;2020年,印度國防研究與發(fā)展組織宣布其自主研發(fā)的高超聲速技術(shù)示范飛行器試驗成功;2023年,法國成功測試V-MaX高超聲速導(dǎo)彈,其成為歐洲首個掌握高超聲速技術(shù)的國家;中國也在積極研發(fā)部署高超聲速巡航導(dǎo)彈和高超聲速滑翔飛行器,同時注重開發(fā)具有軍事和民用應(yīng)用的長程、可重復(fù)使用的高超聲速實驗平臺。
高超聲速技術(shù)在民用航空領(lǐng)域的應(yīng)用尚不成熟,大部分研究仍處于研發(fā)或試驗階段。例如,2018年美國波音公司推出了高超聲速客機的概念及相關(guān)技術(shù)方案;美國的Hermeus和Stratolaunch公司及澳大利亞的Hypersonix公司正在積極研發(fā)以5馬赫以上速度飛行的高超聲速無人駕駛飛機,并計劃開展相關(guān)飛行測試。英國Aerion公司正在研發(fā)全電及混合電力推進的高超聲速民用飛機。歐盟委員會資助的StratoFly項目,設(shè)計了一架飛行速度在4—8馬赫、低噪音的氫燃料高超聲速飛行器(StratoFly MR3)。俄羅斯正在研發(fā)一款以液態(tài)氫燃料為動力、速度達15馬赫、可全球飛行的高超聲速貨運無人機。中國也致力于在“臨近空間”飛行技術(shù)中取得突破,通過發(fā)布政策規(guī)劃不斷完善我國在可重復(fù)使用、天地往返飛行器,以及依托高超聲速技術(shù)實現(xiàn)低成本空天往返等相關(guān)領(lǐng)域研究布局。此外,以凌空天行、零壹空間等為代表的民營航天企業(yè),也積極圍繞空天技術(shù)需求、瞄準亞軌道飛行市場開展相關(guān)研究、不斷向在“臨近空間”實現(xiàn)商業(yè)飛行的目標靠近。
本文通過重點梳理美國、俄羅斯等主要國家在高超聲速領(lǐng)域的重要研究部署和進展,并通過文獻計量方法挖掘當前各國/地區(qū)研發(fā)格局,以期為我國在該技術(shù)領(lǐng)域的政策制定、未來發(fā)展規(guī)劃、研發(fā)布局等提供參考。
關(guān)鍵研究進展
高超聲速技術(shù)的應(yīng)用主要涉及高超聲速航行的飛行器,具體包括巡航導(dǎo)彈和軍用飛機、高超聲速客機,以及能水平起降的可重復(fù)使用空天飛機等。高超聲速技術(shù)的研發(fā)主要集中在軍事領(lǐng)域的高超聲速武器,如彈道導(dǎo)彈、高超聲速滑翔飛行器、高超聲速巡航導(dǎo)彈等。
基于Web of Science核心合集數(shù)據(jù)庫對高超聲速技術(shù)領(lǐng)域的發(fā)文情況進行文獻計量分析可以發(fā)現(xiàn),1946年該領(lǐng)域首次有相關(guān)論文發(fā)表,是錢學(xué)森發(fā)表在《數(shù)學(xué)與物理雜志》上的文章《論高超聲速流的相似律》,首次給出了高超聲速概念;1956—1990年該技術(shù)一直處于緩慢發(fā)展階段;自1991年起,該領(lǐng)域開始出現(xiàn)快速、穩(wěn)步增長的趨勢(圖1,相關(guān)檢索策略見附錄1)。
圖2是VOSviewer構(gòu)建的1946—2023年高超聲速技術(shù)主題圖譜,共形成了6個關(guān)鍵詞聚類。動力推進技術(shù)(綠色部分),包含超燃沖壓發(fā)動機、聯(lián)合循環(huán)發(fā)動機、燃油噴射、湍流燃燒等內(nèi)容。制導(dǎo)與控制技術(shù)(藍色部分),包含滑動模式控制、自適應(yīng)(模糊)控制、軌跡優(yōu)化、容錯控制、再入制導(dǎo)等內(nèi)容。新型材料和熱防護技術(shù)(黃色部分),包含熱防護系統(tǒng)、機械性能、碳-碳化合物、陶瓷基復(fù)合材料、二硼化硅碳化物等內(nèi)容。高超聲速風(fēng)洞(淺藍色部分),包含高超聲速邊界層、流體動力學(xué)穩(wěn)定性、隧道等內(nèi)容。 空氣動力學(xué)(紫色部分),包含空氣動力學(xué)、湍流、納維-斯托克斯方程、數(shù)值模擬、高超聲速流動等內(nèi)容。高超聲速防御系統(tǒng)(紅色部分),包含大氣再入、等離子鞘、通信、雷達監(jiān)測、核武器等內(nèi)容。
綜合上述計量結(jié)果和相關(guān)文獻調(diào)研,考慮到高超聲速風(fēng)洞的研制是為模擬高超聲速飛行過程中的空氣動力學(xué)和熱力學(xué)環(huán)境,以服務(wù)高超聲速飛行器氣動特性研究。因此本文將高超聲速技術(shù)領(lǐng)域的研究內(nèi)容歸納為動力推進技術(shù)、制導(dǎo)與控制技術(shù)、新型材料和熱防護技術(shù)、高超聲速風(fēng)洞、高超聲速防御系統(tǒng)等5個方面,并在后文對這5方面內(nèi)容進行綜述。
動力推進技術(shù)
代表性動力推進技術(shù)。包括火箭動力技術(shù)、超燃沖壓發(fā)動機技術(shù),以及預(yù)冷卻發(fā)動機、爆震發(fā)動機、磁流體發(fā)動機等新型動力推進技術(shù)。火箭動力技術(shù)是發(fā)展最早、應(yīng)用最多的動力技術(shù),但火箭動力的不可復(fù)用性會產(chǎn)生運行成本過高的問題,因此開發(fā)可復(fù)用的火箭運載技術(shù),以及固體燃料是主要發(fā)展方向。超燃沖壓發(fā)動機是高超聲速飛行器最理想的動力之一。中國在2020年成功研制世界首臺航空煤油再生冷卻超燃沖壓發(fā)動機,是繼美國之后第二個將超燃沖壓發(fā)動機用于高超聲速飛行器并完成了自主飛行試驗的國家。另一種具備潛力的推進技術(shù)是駐定斜爆震(SOD)發(fā)動機。該發(fā)動機采用了斜爆轟來取代超燃沖壓發(fā)動機燃燒器中以擴散為主的燃燒,具有功率密度高、燃燒室長度短、發(fā)動機結(jié)構(gòu)簡單等特點。
組合發(fā)動機技術(shù)。單一類型的發(fā)動機難以滿足高超聲速飛行器在大空域、寬速域、高性能飛行的需求,組合發(fā)動機具備綜合性能高、適用范圍廣等優(yōu)點,也是高超聲速飛行器理想的動力裝置之一。常見的組合動力推進技術(shù)有:火箭基組合循環(huán)動力(RBCC)、渦輪基組合循環(huán)動力(TBCC)、空氣渦輪火箭組合發(fā)動機(ATR)等。RBCC。美國代表性的發(fā)動機有Strutjet發(fā)動機、A5發(fā)動機、GTX RBCC發(fā)動機等。2022年,我國研制的“飛天一號”發(fā)射成功,首次驗證了采用煤油燃料的RBCC在火箭/亞燃、亞燃、超燃、火箭/超燃等多模態(tài)中平穩(wěn)過渡的能力。TBCC。由燃氣渦輪發(fā)動機和亞/超燃沖壓發(fā)動機組成,在0—3馬赫范圍內(nèi)具有高比沖的優(yōu)勢。美國代表性的發(fā)動機有RTA渦輪加速器、FRE發(fā)動機、獵鷹聯(lián)合循環(huán)發(fā)動機(FaCET)、“三噴氣”組合循環(huán)的渦輪噴氣發(fā)動機;歐盟代表性的發(fā)動機有彎刀(Scimitar)發(fā)動機、“佩刀”(Sabre)發(fā)動機。我國研發(fā)了渦輪輔助火箭增強沖壓組合循環(huán)發(fā)動機(TRRE),現(xiàn)已完成了該發(fā)動機原理樣機的部件以及整機過渡態(tài)和穩(wěn)態(tài)直連式驗證。ATR,可以采用多種燃料體系、可使飛行器在跑道上水平起降。美國和日本在該領(lǐng)域開展了重點研究,多次進行試車研究和相關(guān)論證工作;中國也在該領(lǐng)域積極開展相關(guān)研究,但尚未有ATR發(fā)動機的試驗對比研究發(fā)布。
制導(dǎo)與控制技術(shù)
與傳統(tǒng)飛行器相比,高超聲速飛行器面臨飛行環(huán)境更復(fù)雜、飛行包線跨域大、氣動特性的變化認識有限等問題,對于控制系統(tǒng)設(shè)計提出了更為嚴苛的要求,因此高超聲速控制是飛行器控制的前沿問題。Li等基于結(jié)構(gòu)化奇異值理論的控制方法,設(shè)計了可用于高超聲速飛行器的控制器,并在模擬實驗中成功證明了該控制器具有出色的命令軌道性能。飛行馬赫數(shù)控制是高超聲速巡航飛行器重要的控制任務(wù)之一。Zhu等設(shè)計了一種基于吸氣式高超聲速巡航飛行器的魯棒馬赫數(shù)控制器,并通過模擬實驗驗證了該控制器在馬赫數(shù)控制系統(tǒng)方面的良好性能。Wang等考慮了與超聲速燃燒沖壓測試相關(guān)的高超聲速飛行器姿態(tài)建立和線性控制概念等關(guān)鍵問題,提出了一種無人高超聲速測試飛行器的姿態(tài)控制系統(tǒng),其中魯棒控制器采用混合靈敏度方法設(shè)計。
高超聲速飛行時,飛行器周圍的高動態(tài)等離子體鞘層會降低通信質(zhì)量。隨著飛行參數(shù)的變化,等離子體鞘對電磁波的衰減效應(yīng)會在短時間內(nèi)減弱,進而產(chǎn)生“通信窗口”,但該窗口出現(xiàn)所需的參數(shù)隨機。對此,Zhang等提出了一個短幀噴泉代碼(SFFC),成功構(gòu)建了一個時變等離子體護套通道模型,并通過模擬試驗驗證了SFFC提高通過等離子鞘進行通信的可靠性。2022年,中國成功研制出一款名為“臨近空間高速目標等離子體電磁科學(xué)實驗研究裝置”,解決了等離子鞘套(黑障)下通信的難題。隨著該成果在高超聲速武器和飛行器中的應(yīng)用,將大幅提高指揮控制和末端機動的精度和效率。
高超聲速飛行器的容錯控制是需要研究的關(guān)鍵問題。Lu等為執(zhí)行器故障問題設(shè)計了一種強大的容錯H∞靜態(tài)反饋控制器。Wang等為吸氣式高超聲速飛行器的執(zhí)行器障礙提出了一種基于實際有限時間活動模塊方法的自適應(yīng)容錯控制策略,該策略的有效性通過模擬試驗得到了驗證。Ji等基于時變滑動模式方法,為執(zhí)行器發(fā)生故障的高超聲速飛行器設(shè)計了一種姿態(tài)控制器。通過實驗?zāi)M,發(fā)現(xiàn)當特定通道的執(zhí)行器完全卡住時高超聲速飛行器仍然可以沿著參考軌跡飛行。
開發(fā)在線、實時的軌跡優(yōu)化算法對于高超聲速飛行器進入制導(dǎo)算法至關(guān)重要,近年來基于人工智能(AI)的制導(dǎo)算法在航空航天領(lǐng)域備受關(guān)注。2022年12月,美國亞利桑那大學(xué)教授羅伯托·弗法羅獲得了應(yīng)用高超聲速大學(xué)聯(lián)盟贊助的450萬美元獎勵,用于開發(fā)基于AI驅(qū)動的高超聲速自動駕駛飛行器的制導(dǎo)、導(dǎo)航和控制系統(tǒng)。
新型材料和熱防護技術(shù)
高超聲速飛行器要能應(yīng)對更加嚴峻的熱環(huán)境,即長時間加熱的情況下飛行器表面不燒蝕,以及飛行器外形結(jié)構(gòu)不變形。
在高超聲速飛行器新型材料研究過程中,有機復(fù)合材料、金屬基復(fù)合材料和陶瓷基復(fù)合材料一直是研究的重點。超高溫陶瓷(UHTC)是指IV族和V族過渡金屬碳化物、氮化物和硼化物,UHTC被認為是適合制造或保護置于如高溫核反應(yīng)堆、高超聲速飛行等極端操作環(huán)境下的部件材料。2018年,英國倫敦大學(xué)科學(xué)家成功制備了一種高熵超高溫陶瓷碳化物。2022年10月,美國杜克大學(xué)科學(xué)家設(shè)計了一種可調(diào)節(jié)等離子體特性的高熵過渡金屬碳化物(PHECs),其硬度足以攪拌鋼水,并且可以承受7000℉以上的溫度。2024年,華南理工大學(xué)科學(xué)家成功制備了一種具備超強機械承重力和高隔熱性能的多孔高熵二硼化物陶瓷,該材料可承受最高達2000℃高溫,室溫下可承受337 MPa、2000℃下可承受690 MPa的超高抗壓強度。此外,二硼化鋯、二硼化鉿等耐火二硼化物復(fù)合材料,碳酚醛、石墨等碳基復(fù)合材料,以及碳化硅、碳化硼等碳/碳復(fù)合材料也被證明是最具潛力的超高溫材料。
熱防護系統(tǒng)(TPS)從防護概念上可分為被動TPS、主動TPS和半被/主動TPS。被動TPS,多選擇碳/碳基、陶瓷基、金屬基等復(fù)合材料;主動TPS,多選用金屬材料;半被/主動TPS,包括熱管和消融器、需根據(jù)結(jié)構(gòu)選擇不同類型的材料,熱管選擇耐高溫金屬熱管、碳/碳或陶瓷基復(fù)合材料,消融器多選用燒蝕材料。
長時間飛行的高超聲速飛行器將促使典型服役溫度和總價熱量遠超現(xiàn)有飛行器,但傳統(tǒng)設(shè)計手段難以滿足急劇增加熱載荷要求。一方面,多物理防熱、薄層輕質(zhì)、隱身、可重復(fù)使用等多功能耦合的防熱材料設(shè)計是未來研究的重點;另一方面,半主動、半主動/主動、主動等多機制耦合熱防護技術(shù)將成為主要發(fā)展方向。
高超聲速風(fēng)洞
高超聲速風(fēng)洞通過產(chǎn)生高超聲速流場,從而模擬該流態(tài)的典型流動特征——包括停滯區(qū)流場、壓縮激波和高速邊界層轉(zhuǎn)換、熵層和黏性相互作用區(qū),以及高溫等。高超聲速風(fēng)洞可以模擬高空、高速飛行的環(huán)境和條件,以分析彈道導(dǎo)彈、高超聲速飛行器、太空發(fā)射器等在高超聲速飛行時的空氣動力學(xué)數(shù)據(jù),是高超聲速技術(shù)領(lǐng)域相關(guān)研究的關(guān)鍵試驗裝置。
高超聲速風(fēng)洞研究的關(guān)鍵問題在于如何加熱試驗氣體以模擬高超聲速飛行條件下的氣流總溫、氣體流動速度,以及克服尺寸效應(yīng)獲得足夠大的流場。高超聲速風(fēng)洞按照驅(qū)動方式可以分為直接加熱驅(qū)動、加熱輕氣體驅(qū)動、自由活塞驅(qū)動,以及爆轟驅(qū)動4類。2023年,中國成功研制了可以模擬高達30馬赫高超聲速飛行環(huán)境的“爆轟驅(qū)動超高速高焓激波風(fēng)洞”(JF-22超高速風(fēng)洞),標志著中國高超聲速技術(shù)邁上新臺階。
高超聲速防御系統(tǒng)
高超聲速武器的飛行范圍十分廣泛,具備高空偵察、高速突防、遠程精確打擊等能力;因為其飛行速度很快,對防御方防御系統(tǒng)的快速反應(yīng)和快速決策提出了更高要求。現(xiàn)有防空反導(dǎo)系統(tǒng)很難精確識別以高超聲速飛行的飛行器,因此對高超聲速飛行器進行軌跡預(yù)測、及時檢測和識別觀察、連續(xù)跟蹤等研究,對未來航空航天防御體系具有重要意義。
已有研究集中于打造海陸空天一體化的多方位、多手段的監(jiān)測體系;同時聚焦于末端攔截技術(shù)、開發(fā)新型攔截彈,以及選取高能激光武器和電子干擾技術(shù)作為備選。張俊彪等提出了一種基于集合經(jīng)驗?zāi)B(tài)分解和注意力長短時記憶網(wǎng)絡(luò)的高超聲速滑翔飛行器(HGV)軌跡智能預(yù)測方法,能有效預(yù)測HGV的機動軌跡。Yuan等提出了一種基于高光譜特征的高超聲速目標飛行狀態(tài)精準識別的無監(jiān)督分類算法,可以在臨近空間發(fā)現(xiàn)鎖定高超聲速飛行器。Liu等基于攔截器和高超聲速飛行器的不同機動配置,建立了3個攔截場景以研究3個攔截場景中每個因素對攔截性能的影響。
全球高超聲速技術(shù)研發(fā)格局
主要發(fā)文國家分析
圖3呈現(xiàn)了高超聲速技術(shù)領(lǐng)域發(fā)文量排名前10位的國家歷年論文發(fā)表情況(統(tǒng)計時間1991—2023年)。中國和美國是最主要的發(fā)文國家,初期(2006年之前)美國具有顯著優(yōu)勢;自從2006年中國發(fā)布《國家中長期科學(xué)和技術(shù)發(fā)展規(guī)劃綱要(2006—2020年)》將大型飛機重大專項、高超聲速飛行器科技工程確定為16個重大科技專項,以及2007年國務(wù)院常務(wù)會議批準大型飛機研制重大科技專項正式立項之后,中國在該領(lǐng)域的發(fā)文量開始快速增長,并于2010年首次超過美國,至今一直處于領(lǐng)先地位。
美國。當前,美國認為其在高超聲速導(dǎo)彈技術(shù)方面已經(jīng)處于落后地位,對此美國國防部(DOD)將高超聲速技術(shù)與武器的發(fā)展提升到?jīng)Q定勝敗的戰(zhàn)略高度,并不斷發(fā)布戰(zhàn)略規(guī)劃以指導(dǎo)、推進高超聲速技術(shù)發(fā)展。2021年,為應(yīng)對高超聲速武器系統(tǒng)等高端系統(tǒng)帶來的挑戰(zhàn),DOD圍繞進攻性高超聲速能力、開發(fā)和部署用于防御高超聲速系統(tǒng)的分層系統(tǒng)、可重復(fù)使用的高超聲速系統(tǒng)等3個研究方向,制定了1項綜合戰(zhàn)略。2022年2月,美國國家科學(xué)技術(shù)委員會發(fā)布的更新版“關(guān)鍵和新興技術(shù)清單”中,將高超聲速技術(shù)列為關(guān)鍵和新興技術(shù);4月,美國蘭德公司發(fā)布的《破壞威懾:21世紀戰(zhàn)略威懾技術(shù)的影響研究》報告中將高超聲速武器列為八大技術(shù)之一;10月,美國發(fā)布《國防戰(zhàn)略》和《導(dǎo)彈防御評估報告》報告強調(diào),將繼續(xù)發(fā)展主動和被動結(jié)合的防御系統(tǒng)以應(yīng)對高超聲速導(dǎo)彈威脅,以及研發(fā)能識別跟蹤所有高超聲速威脅的感應(yīng)網(wǎng)絡(luò)。根據(jù)DOD 2024財年預(yù)算請求,將申請298億美元用于加強導(dǎo)彈擊落和防御,涉及網(wǎng)絡(luò)行動和高超聲速打擊能力的技術(shù)和演示等內(nèi)容;110億美元用于提供各種高殺傷力的精確武器,包括開發(fā)、測試和采購高超聲速武器。此外,美國國會批準了2.25億美元的額外資金,計劃在2040年底之前部署“不少于24個”滑翔階段攔截器。美國正在研制多種高超聲速武器,包括以火箭驅(qū)動的“戰(zhàn)術(shù)助推滑翔”導(dǎo)彈(TBG)、高超聲速巡航導(dǎo)彈(HAWC)、高超聲速空射巡航導(dǎo)彈(HALO),并通過“高超聲速和高節(jié)奏機載試驗?zāi)芰Α保℉yCAT)項目構(gòu)建高超聲速飛行試驗平臺;同時不斷加快高超聲速飛機的研究,如發(fā)布“女武神”高超聲速無人機模型設(shè)計圖、“觀星者”高超聲速飛機概念圖、完成了“夸特馬”(Quarterhorse)高超聲速飛機發(fā)動機的地面試驗等。
俄羅斯。此前俄羅斯在高超聲速領(lǐng)域的相關(guān)工作一直處于秘密研發(fā)狀態(tài),2018年開始才有相關(guān)研究成果公布。俄羅斯是世界上第一個生產(chǎn)和列裝高超聲速巡航導(dǎo)彈的國家,目前主要研制了3種高超聲速導(dǎo)彈——“先鋒”高超聲速洲際彈道導(dǎo)彈、“鋯石”巡航導(dǎo)彈和“匕首”高超聲速空射彈道導(dǎo)彈,且均正式服役。為確保空天優(yōu)勢,俄羅斯國防部,一方面持續(xù)推進高超聲速導(dǎo)彈項目建設(shè),X-95新型遠程高超聲速導(dǎo)彈的研發(fā)已取得極大進展,并將該導(dǎo)彈列入遠程航空打擊系統(tǒng)裝備,“小精靈”高超聲速空射導(dǎo)彈、“銳利”機載小型高超聲速導(dǎo)彈、“蛇紋石”反艦彈道導(dǎo)彈、“KH-95”遠程高超聲速空射戰(zhàn)略巡航導(dǎo)彈等處于開發(fā)測試階段。另一方面不斷加強對現(xiàn)有高超聲速打擊體系的完善和發(fā)展,持續(xù)推出新的核潛艇,如研制可攜帶高超聲速武器的“未來遠程戰(zhàn)略轟炸機”、對可發(fā)射“鋯石”高超聲速導(dǎo)彈的“阿庫拉”“奧斯卡”級核潛艇進行現(xiàn)代化升級改裝等。俄羅斯持續(xù)推進新一代空天聯(lián)合防御系統(tǒng)試驗與部署,S-500、S-550等反衛(wèi)星、反高超聲速系統(tǒng)取得重大進展。此外,俄羅斯還在積極研發(fā)高超聲速阻擊步槍子彈,已開始測試速度最終能達到1500米/秒以上的高超聲速狙擊彈。
中國。中國在高超聲速領(lǐng)域的研究起步較晚,隨著相關(guān)政策規(guī)劃的發(fā)布不斷推進高超聲速技術(shù)的發(fā)展,基本解決或初步解決高超聲速飛行器研究過程中的相關(guān)技術(shù)難題。國內(nèi)制造和部署高超聲速飛行器的能力正在迅速發(fā)展,相關(guān)高超聲速研發(fā)成果有DF-5洲際彈道導(dǎo)彈、DF-17高超聲速彈道導(dǎo)彈、“星空-2”乘波體高超聲速飛行器、“鷹擊-21”高超聲速反艦導(dǎo)彈等。
澳大利亞、日本、德國、以色列、韓國等。紛紛制定了政策規(guī)劃、積極探索高超聲速領(lǐng)域相關(guān)技術(shù)的發(fā)展。
主要資助機構(gòu)
圖4是高超聲速技術(shù)主要資助機構(gòu)論文數(shù)及影響力(影響力用資助論文的篇均被引頻次來體現(xiàn))。
從論文數(shù)來看,中國國家自然科學(xué)基金委員會(NSFC)是該領(lǐng)域的最大資助機構(gòu)——NSFC資助產(chǎn)出論文共2803篇,占前20位資助機構(gòu)總論文數(shù)的48.7%。基于國家空天安全的重大需求,NSFC分別于2002年和2007年啟動了與空天飛行器相關(guān)的重大研究計劃,以引導(dǎo)中國在高超聲速技術(shù)領(lǐng)域的基礎(chǔ)研究工作,此后通過重點項目、面上項目、青年科學(xué)基金等不斷加大對該領(lǐng)域相關(guān)研究的支持力度。
從影響力來看,英國的2個機構(gòu)影響力排名前2位,分別為英國研究與創(chuàng)新署(UKRI,影響力25.28)、英國工程和物理科學(xué)研究理事會(EPSRC,影響力25.99)。UKRI包含EPSRC在內(nèi)的9個研究組織;EPSRC共設(shè)立了9個資助行業(yè)組(sector grouping),當前(數(shù)據(jù)統(tǒng)計時間截至2024年5月31日)資助中的航空航天、國防和海洋領(lǐng)域項目共198個項目、資助金額近5.2億英鎊。根據(jù)UKRI 2022—2025年基礎(chǔ)設(shè)施基金項目,UKRI計劃8年內(nèi)投入5200萬英鎊用于國家風(fēng)洞基礎(chǔ)設(shè)施建設(shè)(NWTF+)。此外,英國國防部2023年更新的《國防科學(xué)與技術(shù)投資組合》表示將至少投資66億英鎊用于國防科學(xué)研究項目,其中第17個項目是研究和開發(fā)未來高超聲速概念和技術(shù)。
資助發(fā)文量排名前20位的資助機構(gòu)中美國有6家,自DOD啟動“國家航空航天倡議”(NAI)后,一直積極與美國能源部、NASA及各高校就開發(fā)高超聲速武器和技術(shù)開展合作。美國對高超聲速技術(shù)的經(jīng)費投入一直呈上升狀態(tài)——2023年美軍高超聲速技術(shù)研發(fā)經(jīng)費達51.26億美元,2024年高超聲速技術(shù)預(yù)算經(jīng)費為50.49億美元。
討論與展望
高超聲速技術(shù)在軍事上的強突防、強偵察及遠程精確打擊,以及民用上的可大幅縮減洲際商務(wù)飛行時間、具備太空旅行等能力,被很多國家視為未來軍事科技、民用航空領(lǐng)域的新制高點,以及未來大國博弈的重要工具,具有可能重新定義戰(zhàn)爭規(guī)則的重大意義。世界各國不斷加大在該領(lǐng)域的研發(fā)力度,紛紛出臺相關(guān)政策規(guī)劃以促進該技術(shù)的發(fā)展。對此,提出我國未來在高超聲速技術(shù)領(lǐng)域的3點建議。
注重相關(guān)政策、規(guī)劃制定,以及對重點資助的技術(shù)方向和資助方式的延續(xù)性。以美國為例,美國是較早在該領(lǐng)域發(fā)展的國家之一,由于相關(guān)政策規(guī)劃的不斷調(diào)整,使得其在該領(lǐng)域的發(fā)展循環(huán)往復(fù)。因此,建議通過發(fā)布相關(guān)政策規(guī)劃,明確我國在高超聲速技術(shù)領(lǐng)域的優(yōu)先發(fā)展事項;同時依托國家自然科學(xué)基金、國家科技重大專項,以及設(shè)立聯(lián)合基金項目等方式,確保高超聲速領(lǐng)域研究獲得持續(xù)的經(jīng)費投入。
在5個方面完善高超聲速技術(shù)布局。動力推進技術(shù)、制導(dǎo)與控制技術(shù)、新型材料和熱防護技術(shù)等是高超聲速領(lǐng)域的熱點研究方向,因此可以通過設(shè)立重大科技任務(wù)的方式促進上述相關(guān)研究的發(fā)展,以克服高速推進系統(tǒng)、可重復(fù)利用技術(shù)、極端高溫、材料性能等部署高超聲速武器面臨的技術(shù)挑戰(zhàn)。加快建設(shè)針對不斷增強高超聲速武器的防御系統(tǒng),裝備更具靈活性、高生存能力和低成本的高超聲速防御系統(tǒng)和太空傳感器是需要關(guān)注的重點方向。世界主要國家也正積極開展高超聲速武器防御系統(tǒng)的研發(fā)。例如,2022年俄羅斯成功試射了新型導(dǎo)彈防御系統(tǒng),該系統(tǒng)已在航空航天部隊服役,旨在防御高超聲速武器等空中和太空攻擊;美國也將優(yōu)先考慮建立防御架構(gòu),以對抗來自對手的高超聲速武器。注重高超聲速地面試驗和飛行試驗?zāi)芰ㄔO(shè),依托不斷更新升級的地面試驗設(shè)施和飛行試驗平臺的能力,構(gòu)建我國高超聲速技術(shù)發(fā)展生態(tài)。以高超聲速飛行的飛機可以在地球上形成一個新的商業(yè)點對點運輸市場。建議我國加快探索高超聲速技術(shù)在民用領(lǐng)域的應(yīng)用、研發(fā)可重復(fù)使用高超聲速飛行器、實現(xiàn)相關(guān)核心技術(shù)和供應(yīng)鏈自主可控。目前,還沒有關(guān)于使用高超聲速武器的多邊或雙邊條約,因此在聯(lián)合防空和導(dǎo)彈防御等方面達成相關(guān)國際協(xié)議也是未來需要關(guān)注的重點。
加速相關(guān)研究成果向?qū)嶋H應(yīng)用轉(zhuǎn)化。我國在超燃沖壓發(fā)動機、高超聲速風(fēng)洞、制導(dǎo)與控制技術(shù)等方面不斷取得突破,在新型耐高溫材料研發(fā)等方面也有了豐富的研究成果。未來還需采取如設(shè)立成果轉(zhuǎn)化基金、鼓勵研發(fā)機構(gòu)與企業(yè)形成創(chuàng)新攻關(guān)共同體、圍繞產(chǎn)業(yè)需求構(gòu)建相關(guān)科研任務(wù)等方法構(gòu)建高超聲速領(lǐng)域產(chǎn)學(xué)研協(xié)同的創(chuàng)新發(fā)展道路,提高研究成果從實驗室向市場轉(zhuǎn)化的效率,不斷增強我國在高超聲速領(lǐng)域的自主攻關(guān)能力。
(作者:黃小容、周海晨,中國科學(xué)院成都文獻情報中心;陳云偉,中國科學(xué)院成都文獻情報中心 中國科學(xué)院大學(xué)經(jīng)濟與管理學(xué)院。《中國科學(xué)院院刊》供稿)